A spectral-in-time Newton–Krylov method for nonlinear PDE-constrained optimization

نویسندگان

چکیده

Abstract We devise a method for nonlinear time-dependent partial-differential-equation-constrained optimization problems that uses spectral-in-time representation of the residual, combined with Newton–Krylov to drive residual zero. also propose preconditioner accelerate this scheme. Numerical results indicate can achieve fast and accurate solution range mesh sizes problem parameters. The numbers outer Newton inner Krylov iterations required reach attainable accuracy spatial discretization are robust respect number collocation points in time do not change substantially when other parameters varied.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjoint method for a tumor growth PDE-constrained optimization problem

In this paper we present a method for estimating unknown parameters that appear on an avascular, spheric tumour growth model. The model for the tumour is based on nutrient driven growth of a continuum of live cells, whose birth and death generate volume changes described by a velocity field. The model consists on a coupled system of partial differential equations whose spatial domain is the tum...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Primal-Dual Extragradient Methods for Nonlinear Nonsmooth PDE-Constrained Optimization

We study the extension of the Chambolle–Pock primal-dual algorithm to nonsmooth optimization problems involving nonlinear operators between function spaces. Local convergence is shown under technical conditions including metric regularity of the corresponding primal-dual optimality conditions. We also show convergence for a Nesterov-type accelerated variant provided one part of the functional i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ima Journal of Numerical Analysis

سال: 2021

ISSN: ['1464-3642', '0272-4979']

DOI: https://doi.org/10.1093/imanum/drab011